603 research outputs found

    Factores psicosociales influyentes en la ocurrencia de accidentes laborales

    Get PDF
    El objetivo del trabajo es la presentación de un modelo de predicción de la siniestralidad laboral basado en datos empíricos en un conjunto de variables susceptibles de intervención. El método empleado es un diseño transversal y correlacional, en el que a partir de una muestra representativa de más de 500 trabajadores de diferentes sectores de actividad de la provincia de Valencia, se cuantifica la importancia relativa de cada uno de los aspectos definidos como relevantes para predecir la ocurrencia de accidentes. El uso metodológico de modelos de ecuaciones estructurales permite la consideración simultánea de un gran número de variables, junto con un adecuado control estadístico, reflejando así con mayor fidelidad la problemática de la siniestralidad laboral. Los resultados muestran el impacto de la variables organizacionales y los riesgos sobre variables del trabajador, la importancia de éstas en la predicción de accidentes, junto con su papel mediador en los efectos de las variables organizacionales (clima de seguridad, formación en seguridad, sobrecarga de trabajo, etc.) sobre la ocurrencia de accidentes laborales. La conclusión es que los aspectos psicosociales son claves en la explicación de los accidentes laborales y abren vías para una intervención efica

    Soot temperature characterization of spray a flames by combined extinction and radiation methodology

    Full text link
    [EN] Even though different optical techniques have been applied on 'Spray A' in-flame soot quantification within Engine Combustion Network in recent years, little information can be found for soot temperature measurement. In this study, a combined extinction and radiation methodology has been developed with different wavelengths and applied on quasi-steady Diesel flame to obtain the soot amount and temperature distribution simultaneously by considering self-absorption issues. All the measurements were conducted in a constant pressure combustion chamber. The fuel as well as the operating conditions and the injector used were chosen following the guidelines of the Engine Combustion Network. Uncertainty caused by wavelength selection was evaluated. Additionally, temperature-equivalence ratio maps were constructed by combining the measurements with a 1D spray model. Temperature fields during the quasi-steady combustion phase show peak temperatures around the limit of the radiation field, in agreement with a typical diffusion flame structure. Effects of different operating parameters on soot formation and temperature were investigated. Soot temperature increases dramatically with oxygen concentration, but it shows much less sensitivity with ambient temperature and injection pressure, which on the other hand have significant effects on soot production. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.This study was partially funded by the Ministerio de Economia y Competitividad from Spain in the frame of the CHEST Project (TRA2017-89139-C2-1-R) and China Postdoctoral Science Foundation (2018M642176). This study was also partially supported by State Key Laboratory of Engines, Tianjin University.Xuan, T.; Desantes J.M.; Pastor, JV.; García-Oliver, JM. (2019). Soot temperature characterization of spray a flames by combined extinction and radiation methodology. Combustion and Flame. 204:290-303. https://doi.org/10.1016/j.combustflame.2019.03.02329030320

    Experimental validation and analysis of seven different chemical kinetic mechanisms for n-dodecane using a Rapid Compression-Expansion Machine

    Full text link
    [EN] Seven different chemical kinetic mechanisms for n-dodecane, two detailed and five reduced, have been evaluated under Engine Combustion Network (ECN) thermodynamic conditions by comparison to experimental measurements in a Rapid Compression-Expansion Machine (RCEM). The target ECN conditions are imposed at Top Dead Center (TDC), which cover a wide range of temperatures (from 850 K to 1000 K), oxygen molar fractions (0.21 and 0.15) and equivalence ratios (0.8, 0.9 and 1), while the pressure is fixed to keep a constant density at TDC equal to 22.8 kg/m(3). The results obtained have been used to validate the chemical kinetic simulations, which have been performed with CHEMKIN, by comparing both cool flames and high temperature ignition delays, as well as the heat released in each stage of the combustion process in case of having a two-stage ignition pattern. The experimental results show good agreement with the chemical kinetic simulations. In fact, the mean relative deviation in ignition delay between experiments and simulations among all the chemical mechanisms is equal to 18.0% (3 CAD) for both cool flames and high temperature ignition. In general, closer correspondence has been obtained for the ignition delay referred to the high-temperature stage of the process, being the cool flames phenomenon more difficult to reproduce. Moreover, the differences between the reduced mechanisms and the most detailed one have been analyzed, concluding that the enhanced specific reaction rates of the most reduced mechanisms cause differences not only on the ignition delays, but also on the Negative Temperature Coefficient (NTC) behavior and on the heat released during cool flames. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.The authors would also like to thank the Spanish Ministry of Education for financing the PhD. Studies of Dario Lopez-Pintor (grant FPU13/02329). This study was partially funded by the Spanish Ministry of Economy and Competitiveness in the frame of the COMEFF (TRA2014-59483-R) project.Desantes, J.; López, JJ.; García-Oliver, JM.; López-Pintor, D. (2017). Experimental validation and analysis of seven different chemical kinetic mechanisms for n-dodecane using a Rapid Compression-Expansion Machine. Combustion and Flame. 182:76-89. https://doi.org/10.1016/j.combustflame.2017.04.004S768918

    A phenomenological explanation of the autoignition propagation under HCCI conditions

    Full text link
    [EN] A phenomenological explanation about the autoignition propagation under HCCI conditions is developed in this paper. To do so, diffusive effects from the burned zones to the fresh mixture, pressure waves based effects and expansion effects caused by combustion are taken into account. Additionally, different Damkohler numbers have been defined and evaluated in order to characterize the phenomenon and quantify the relevance of each effect. The theoretical explanation has been evaluated by means of chemiluminescence measurements performed in a Rapid Compression Expansion Machine (RCEM), which allow to estimate the velocity of propagation of the autoignition front. The results showed that under HCCI conditions the autoignition propagation is controlled, in general, by the pressure waves established in the combustion chamber, since the characteristic time of the autoignition propagation is too short to assume the absence of pressure gradients in the chamber. Thus, the thermodynamic conditions reached behind the pressure wave promote the autoignition and explain the high propagation velocities associated to the reaction front. Besides, the results also showed that the contribution of diffusive phenomena on the propagation is negligible, since the characteristic time of diffusion is too long compared to the characteristic time of the autoignition propagation. Finally, the experimental measurements showed that the autoignition propagation is affected by a really relevant cycle-to-cycle variation. The turbulence generated by the combustion has, by definition, an aleatory behavior, leading to random heterogeneity distribution and, therefore, to somewhat random autoignition propagation.The authors would like to thank different members of the CMT-Motores TTrmicos team of the Universitat Politecnica de Valencia for their contribution to this work. The authors would also like to thank the Spanish Ministry of Education for financing the PhD. Studies of Dario Lopez-Pintor (grant FPU13/02329). This research has been partially funded by FEDER and the Spanish Government through project TRA2015-67136-R.Desantes, J.; López, JJ.; García-Oliver, JM.; López-Pintor, D. (2017). A phenomenological explanation of the autoignition propagation under HCCI conditions. Fuel. 206:43-57. https://doi.org/10.1016/j.fuel.2017.05.075S435720

    Application of an unsteady flamelet model in a RANS framework for spray A simulation

    Full text link
    [EN] In the present investigation the Spray A reference configuration defined in the framework of the Engine Combustion Network (ECN) has been modeled by means of an Unsteady Flamelet Model (USFM) including detailed parametric studies to evaluate the impact of ambient temperature, oxygen concentration and density. The study focuses on the analysis of the spray ignition delay, the flame lift-off length and the internal structure of the spray and flame according to the experimental information nowadays available for validating the results provided by the model. Promising results are obtained for the nominal case and also for the parametric variations (temperature, oxygen...) in terms of liquid and vapor penetration, ignition delay (ID) and lift-off length (LOL). The model permits to predict the ID and the LOL which constitute two parameters of key importance for describing the characteristics of transient reacting sprays. Valuable insight on the details of the combustion process is obtained from the analysis of formaldehyde (CH2O), acetylene (C2H2) and hydroxide (OH) species in spatial coordinates and also in the so-called phi-T maps. Important differences arise in the inner structure of the flame in the quasi-steady regime, which is closely linked to soot formation, when varying the ambient boundary conditions. Additionally, the auto-ignition process is investigated in order to describe in detail the spatial onset and propagation of combustion. Results confirm the impact of the ambient conditions on the regions of the spray where start of combustion takes place, so the relation between the local scalar dissipation rate and mixture fraction variance is also discussed. This investigation provides an insight of the potential of the USFM combustion model to describe the physical and chemical processes involved in transient spray combustion.Authors acknowledge that this work was possible thanks to the Ayuda para la Formacion de Profesorado Universitario (FPU 14/03278) belonging to the Subprogramas de Formacion y de Movilidad del Ministerio de Educacion, Cultura y Deporte from Spain. Also this study was partially funded by the Ministerio de Economia y Competitividad from Spain in the frame of the COMEFF (TRA2014-59483-R) national project.Desantes, J.; García-Oliver, JM.; Novella Rosa, R.; Pérez-Sánchez, EJ. (2017). Application of an unsteady flamelet model in a RANS framework for spray A simulation. Applied Thermal Engineering. 117:50-64. https://doi.org/10.1016/j.applthermaleng.2017.01.101S506411

    A study on tip penetration velocity and radial expansion of reacting diesel sprays with different fuels

    Full text link
    [EN] The reacting diesel spray structure was investigated using n-dodecane, n-heptane and one binary blend of Primary Reference Fuels (80% n-heptane and 20% iso-octane in mass) based on the existing database from previous experimental results from Schlieren imaging technique in a constant pressure combustion chamber. The spray tip velocity was derived from the derivative of tip penetration versus time. The operating conditions and the injector used (single axially-oriented hole, 89 mm-diameter) were chosen following the guidelines of the Engine Combustion Network. A 1D spray model was also applied here to support the analysis of experimental results. Parametric variations of injection pressure, ambient temperature and oxygen concentration have been performed for each fuel. Analysis of radial expansion and reacting tip velocity was performed in terms of an average spray radial increase (DR) and a constant (k) defining the tip penetration velocity. k values of reacting cases are always bigger than those from inert ones for both experimental and theoretical results. Based upon this parameter, quasi-steady tip penetration under the investigated conditions seems not to be affected by ambient temperature, oxygen content or fuel cetane number. Three cases with different fuels and similar ignition delay and lift-off length were further analyzed, which shows that the reactivity of the mixture has an effect on the transition timing from inert to reacting states, as well as on the initial penetration stages, but not on the quasi-steady phase. Apart from the similar tip velocity during quasi-steady phase, the full transient evolution of the tip is highly similar. The fact that this full overlap does not occur for other operating conditions indicates that early penetration stages are highly affected by the transient chemistry development, which largely depends on fuel cetane number.This study was partially funded by the Spanish Ministry of Economy and Competitiveness in the frame of the COMEFF (TRA2014-59483-R) project. Funding for Tiemin Xuan's PhD studies was granted by Universitat Politecnica de Valencia through the Programa de Apoyo para la Investigacion y Desarrollo (PAID) (Grant reference FPI-2015-S2-1068).Desantes J.M.; García-Oliver, JM.; Xuan, T.; Vera-Tudela-Fajardo, WM. (2017). A study on tip penetration velocity and radial expansion of reacting diesel sprays with different fuels. Fuel. 207:323-335. https://doi.org/10.1016/j.fuel.2017.06.108S32333520

    Ignition and combustion development for high speed direct injection diesel engines under low temperature cold start conditions

    Full text link
    Diesel engine cold start is an important issue for current technology at low (below 0 °C) temperatures and for future applications. The aim of this work is to develop a description of how, when and where does fuel spray ignition occur in a glow-plug assisted engine under simulated low temperature cold start conditions. In-cylinder pressure analysis is combined with high speed visualization in an optical engine. A pilot plus main injection strategy is used. Visualization results show that pilot ignition occurs in the vicinity of the glow plug, and strongly influences main combustion initiation. Main combustion starts from the pilot flame, and propagates to the rest of the combustion chamber showing a strong visible reaction zone. After end of main injection, the rapid leaning of the mixture suppresses the strong radiation, and OH radiation is observed to progress to the rest of the combustion chamber. The combustion process shows a strong scattering, which has been quantified by combustion parameters. At higher rail pressures scattering increases, which eventually inhibits combustion initiation. However, if ignition occurs at higher rail pressures, cycle performance is better.Authors thank the Spanish Ministry of Innovation and Science for the financial support through the project OPTICOMB (reference code: TRA2007-67961-C03-C01). Authors also thank Daniel Lerida Sanchez de las Heras for his outstanding work in the facility set-up and adaptation and for his support during the tests.Pastor Soriano, JV.; García Oliver, JM.; Pastor Enguídanos, JM.; Ramírez Hernández, JG. (2011). Ignition and combustion development for high speed direct injection diesel engines under low temperature cold start conditions. Fuel. 90(4):1556-1566. https://doi.org/10.1016/j.fuel.2011.01.008S1556156690

    Influence of nozzle geometry on ignition and combustion for high-speed direct injection diesel engines under cold start conditions

    Full text link
    Starting at low temperatures (below 0 °C) is an important issue for current and near future diesel engine technology. Low ambient temperature causes long cranking periods or complete misfiring in small diesel engines and, as a consequence, an increased amount of pollutant emissions. This paper is devoted to study the influence of nozzle geometry on ignition and combustion progression under glow-plug aided cold start conditions. This study has been carried out in an optically accessible engine adapted to reproduce in-cylinder conditions corresponding to those of a real engine during start at low ambient temperature. The cold start problem can be divided in two parts in which nozzle geometry has influence: ignition and main combustion progress. Ignition probability decreases if fuel injection velocity is increased or if the amount of injected mass per orifice is reduced, which is induced by nozzles with smaller hole diameter or higher orifice number, respectively. Combustion rates increase when using nozzles which induce a higher momentum, improving mixture conditions. For these reasons, the solution under these conditions necessarily involves a trade-off between ignition and combustion progress.Authors thank the Spanish Ministry of Innovation and Science for the financial support through the project OPTICOMB (reference code: TRA2007-67961-C03-C01). Authors also thank Daniel Lerida Sanchez de las Heras for his outstanding work in the facility set-up and adaptation and for his support during the tests.Desantes Fernández, JM.; García Oliver, JM.; Pastor Enguídanos, JM.; Ramírez Hernández, JG. (2011). Influence of nozzle geometry on ignition and combustion for high-speed direct injection diesel engines under cold start conditions. Fuel. 90(11):3359-3368. https://doi.org/10.1016/j.fuel.2011.06.006S33593368901

    A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion

    Full text link
    Nowadays many research efforts are focused on the study and development of new combustion modes, mainly based on the use of locally lean air–fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduces pollutant formation and increases efficiency. However these combustion concepts have some drawbacks, related to combustion phasing control, which must be overcome. In this way, the use of a spark plug has shown to be a good solution to improve phasing control in combination with lean low temperature combustion. Its performance is well reported on bibliography, however phenomena involving the combustion process are not completely described. The aim of the present work is to develop a detailed description of the spark assisted compression ignition mode by means of application of UV–Visible spectrometry, in order to improve insight on the combustion process. Tests have been performed in an optical engine by means of broadband radiation imaging and emission spectrometry. The engine hardware is typical of a compression ignition passenger car application. Gasoline was used as the fuel due to its low reactivity. Combining broadband luminosity images with pressure-derived heat-release rate and UV–Visible spectra, it was possible to identify different stages of the combustion reaction. After the spark discharge, a first flame kernel appears and starts growing as a premixed flame front, characterized by a low and constant heat-release rate in combination with the presence of remarkable OH radical radiation. Heat release increases temperature and pressure inside the combustion chamber, which causes the auto-ignition of the rest of the unburned mixture. This second stage is characterized by a more pronounced rate of heat release and a faster propagation of the reactions through the combustion chamber. Moreover, the measured UV–Visible spectra show some differences in comparison with the other stages. The relative intensities in of spectra from different combustion radicals have also been related to the different combustion phases.The authors acknowledge that part of this work was performed in the frame of Project DUFUEL TRA2011-26359, funded by the Spanish Government. The authors also thank GM for technical assistance and its support in other parts of this work.Pastor Soriano, JV.; García Oliver, JM.; García Martínez, A.; Micó Reche, C.; Durret, R. (2013). A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion. Applied Energy. 104:568-575. https://doi.org/10.1016/j.apenergy.2012.11.030S56857510
    corecore